令a=f(1)
则f(1)f(a+1)=1,f(a+1)=1/a
f(a+1)f(1/a+1/(a+1))=1
f(1/a+1/(a+1))=a=f(1)
因此1/a+1/(a+1)=1(这里要求f(x)严格单调)
a^2+a=2a+1
a^2-a-1=0
a=(1加减sqrt(5))/2
实际上令y=f(x)
f(x)f(y+1/x)=1,f(y+1/x)=1/y
f(y+1/x)f(1/y+1/(y+1/x))=1
f(1/y+1/(y+1/x))=y=f(x)
1/y+1/(y+1/x))=x
x y^2-y-1/x=0
(xy)^2-(xy)-1=0
xy=f(1)=a
f(x)=y=a/x
如果题目不是指严格单调,那么f(1)还可能是正负1,即f(x)=正负1