已知函数f(x)=tan(2x+TT/4).(1)求f(x)的定义域与最小正周期; (2)设a属于(0,TT/4),若f
收藏:
0
点赞数:
0
评论数:
0
1个回答

1.最小正周期T=π/2定义域为2x+π/4∈(2kπ-π/2,2kπ+π/2)x∈(kπ-3π/8,kπ+π/8)

2.f(α/2)=tan(α+π/4)

=[tanα+tan(π/4)]/[1-tanα*tan(π/4)]

=(tanα+1)(1-tanα)

=(sinα+cosα)/(cosα-sinα)

=2cos2α=2(cos²α-sin²α)

=2(cosα+sinα)(cosα-sinα)

因α(0,四分之π),所以cosα+sinα>0

所以2(cosα-sinα)²

=1cosα-sinα=±√2/2√2sin(π/4-α)

=±√2/2sin(π/4-α)

=±1/2π/4-α

=±π/6解得α=5π/12(舍去)或π/12

∴α=π/12

点赞数:
0
评论数:
0
关注公众号
一起学习,一起涨知识