(1)∵g'(x)与直线y=2x平行
∴ 设g'(x)=2x+a,则g(x)=x^2+ax+b
又∵y=g(x)在x=-1处取得最小值m-1
∴ g'(-1)=-2+a=0 a=2
m-1=1-2+b b=m
故 g(x)=x^2+2x+m
而 f(X)=g(x)/x
所以f(X)=x+2+m/x
由于曲线y=f(x)上的点P到点Q(0,2)的距离的最小值为√2
d^2=x^2+(x+m/x)^2=(2x^4+2mx^2+m^2)/x^2
(d^2)'=(4x^4-2m^2)/x^3
令 (d^2)'=0得:x^2=m/√2
将其代人 d^2=x^2+(x+m/x)^2=(2x^4+2mx^2+m^2)/x^2=2
得:m=2(√2-1)