已知函数f(x)=a•e x + a+1 x -2(a+1)(a>0) .
1个回答

(Ⅰ)当a=1时,f(x)=e x+

2

x -4,∴f′(x)=e x-

2

x 2 ,∴f′(1)=e-2,

∵f(1)=e-2,

∴f(x)在点(1,f(1))处的切线方程为:(e-2)x-y=0.

(Ⅱ)∵f(x)=a•e x+

a+1

x -2(a+1)(a>0) .

∴f′(x)=

a x 2 e x -(a+1)

x 2 ,

令g(x)=ax 2e x-(a+1),则g′(x)=ax(2+x)e x>0,

∴g(x)在(0,+∞)上单调递增,

∵g(0)=-(a+1)<0,当x→+∞时,g(x)>0,

∴存在x 0∈(0,+∞),使g(x 0)=0,且f(x)在(0,x 0)上单调递减,f(x)在(x 0,+∞)上单调递增,

∵g(x 0)= a x 0 2 e x 0 -(a+1)=0,∴ a x 0 2 e x 0 =a+1,即 a e x 0 =

a+1

x 0 2 ,

∵对于任意的x∈(0,+∞),恒有f(x)≥0成立,

∴f(x) min=f(x 0)= a e x 0 +

a+1

x 0 -2(a+1)≥0,∴

a+1

x 0 2 +

a+1

x 0 -2(a+1)≥0,

1

x 0 2 +

1

x 0 -2≥0 ,∴ 2 x 0 2 - x 0 -1≤ 0,解得-

1

2 ≤x 0≤1,

∵ a x 0 2 e x 0 =a+1,∴ x 0 2 e x 0 =

a+1

a >1,

令h(x 0)= x 0 2 e x 0 ,而h(0)=0,当x 0→+∞时,h(x 0)→+∞,

∴存在m∈(0,+∞),使h(m)=1,

∵h(x 0)= x 0 2 e x 0 在(0,+∞)上,∴x 0>m,

∴m<x 0≤1,

∵h(x 0)= x 0 2 e x 0 在(m,1]上∴h(m)<h(x 0)≤h(1),

∴1<

a+1

a ≤e,∴a≥

1

e-1 .