已知SN是数列{AN}的前N项和,A1=2,√SN -√S(N-1)=√2(1) 求SN的表达式,(2)求数列{AN}通
1个回答

1.√SN -√S(N-1)=√2,√S1=√A1=√2

√SN是等差数列,公差√2,首项√2

√SN=√S1+(N-1)√2 = √2* N

SN=2 N^2

2.AN=SN-S(N-1)=2 N^2- 2 (N-1)^2= 2(2N-1)

3.1/BN= 1/(AN*A(N+1)) = (1/AN - 1/A(N+1)) * (1/(A(N+1) - 1/AN) = (1/AN - 1/A(N+1)) /4

1/B1+1/B2+1/B3+……+1/BN = 1/4 * (1/A1- 1/A2) + 1/4 * (1/A2- 1/A3) + ...+ 1/4 *(1/AN - 1/A(N+1)) = 1/4 (1/A1- 1/A(N+1)) = 1/4 (1/2 - 1/()4N-1)

假设1/B1+1/B2+1/B3+……+1/BN>2成立,即 1/4 (1/2 - 1/(4N-2))>2

但没得自然数N的解,故不存在自然数N使得1/B1+1/B2+1/B3+……+1/BN>2成立