一个牧场长满青草,牛在吃草而草又不断匀速生长,37头牛6天可以把牧场上的草全部吃完;23头牛吃完牧场全部的草则要9天,若
7个回答

这种问题叫:牛顿问题 完整解题思路:假设每头牛每天的吃草量为1,则27头6天的吃草量为27×6=162;23头牛9天的吃草量为23×9=207.207与162的差就是(9-6)天新长出的草,所以牧场每天新长出的草量是(207-162)÷(9-6)=15 因为27头牛6天吃草量为162,这6天新长出的草之和为15×6=90,从而可知牧场原有的划量为162-90=72 牧场每天新长的草够15头牛吃一天,每天都让21头牛中的15头牛吃新长出的草,其余的21-15=6(头)专吃原来的草.所以牧场上的草够吃72÷6=12(天),也就是这个牧场上的草够21头牛吃12天.综合算式:[27×6-(23×9-27×6)÷(9-6)×6]÷[21-(23×9-27×6)÷(9-6)]=12(天)