证明:2-π/2≤(【x^2+x*cosx)/(1+(sinx)^2)】的从-1到1的积分≤2/3
1个回答

首先把两个和拆开,分别为x^2/(1+(sinx)^2)以及x*cosx/(1+(sinx)^2),可以发现前一个为偶函数,后一个为奇函数.由于[-1,1]为对称区间,前一个积分为从0到1的两倍,后一个积分为0,因此只要算前一个即可.

在0到1之间,0≤sinx≤x≤1,所以x^2/(1+x^2)≤x^2/(1+(sinx)^2)≤x^2

左右积分得后,左边是(1-arctanx),右边是1/3x^3,对上下限求得定积分后即可得到

1-π/4≤所求积分≤1/3

现在我们只对了一般区间求了积分,左右再乘以两倍即得最后结果

PS:因为很多符号打不出来,将就着看吧~