解题思路:根据题意可分析第一组、第二组、第三组、…中的数的个数及最后的数,从中寻找规律即可使问题得到解决.
第一组有2=1×2个数,最后一个数为4;
第二组有4=2×2个数,最后一个数为12即2×(2+4);
第三组有6=2×3个数,最后一个数为24,即2×(2+4+6);
…
∴第n组有2n个数,其中最后一个数为2×(2+4+…+2n)=4(1+2+3+…+n)=2n(n+1).
∴当n=32时,第32组的最后一个数为2×32×33=2112,
∴第33组里边有66个数,
∴2120位于第33组.
故选A.
点评:
本题考点: 数列的求和;等差数列的通项公式.
考点点评: 本题考查数列的求和,考查观察与分析问题的能力,考查归纳法的应用,从有限项得到一般规律是难点所在,属于中档题.