已知在△ABC中 ∠BAC=90° AD⊥BC于D CE平分∠ACB交AD于F FG平行于BC交AB于G AE=2 AB
1个回答

过点F作FM⊥AC于M,过点G作GN⊥BC于N

∵CE平分∠ACB

∴∠ACE=∠BCE

∵AD⊥BC,FM⊥AC,CF=CF

∴△CDF全等于△CMF

∴DF=MF

∵GN⊥BC,AD⊥BC,FG∥BC

∴矩形FGND

∴DF=GN

∵AD⊥BC

∴∠CAD+∠ACB=90

∵∠BAC=90

∴∠B+∠ACB=90

∴∠B=∠CAD

∴△AFM全等于△BGN

∴BG=AF

∵∠DCF+∠CFD=90,∠ACF+∠AEC=90,∠ACE=∠BCF

∴∠CFD=∠AEC

∵∠CFD=∠AFE

∴∠AEC=∠AFE

∴AE=AF

∴BG=AE

∵AE=2,AB=7

∴EG=AB-AE-BG=7-2-2=3