数列{an}满足a1+2a2+2^2a3+```````+2^(n-1)an=n^2(n属于整数)(1)求{an}的通项
3个回答

1、

a1+2a2+2^2a3+...+2^(n-2)a(n-1)+2^(n-1)an=n^2 (1)

a1+2a2+2^2a3+...+2^(n-2)a(n-1)=(n-1)^2 (2)

(1)-(2)

2^(n-1)an=n^2-(n-1)^2=(n+n-1)(n-n+1)=2n-1

an=(2n-1)/2^(n-1)=(4n-2)/2^n

{an}的通项公式为an=(4n-2)/2^n

2、

Sn=a1+a2+...+an

=(4/2+4×2/2^2+4×3/2^3+...+4n/2^n)-2(1/2+1/4+...+1/2^n)

令Sn'=1/2+2/2^2+...+(n-1)/2^(n-1)+n/2^n

则Sn'/2=1/2^2+2/2^3+...+(n-1)/2^n+n/2^(n+1)

Sn'-Sn'/2=Sn'/2=1/2+1/2^2+1/2^3+...+1/2^n-n/2^(n+1)

=(1/2)[1-(1/2)^n]/(1-1/2)-n/2^(n+1)

=1-(1/2)^n-n/2^(n+1)

Sn'=2-1/2^(n-1)-n/2^n

Sn=4[2-1/2^(n-1)-n/2^n]-2(1/2)[1-(1/2)^n]/(1-1/2)

=8-2/2^n-4n/2^n-2+2/2^n

=6-4n/2^n