1.
an=n(n+1)(2n-1)=2n³+n²-n
Sn=a1+a2+...+an
=2(1³+2³+...+n³)+(1²+2²+...+n²)-(1+2+...+n)
=2[n(n+1)/2]²+n(n+1)(2n+1)/6-n(n+1)/2
=[n(n+1)/6][3n(n+1)+(2n+1) -3]
=[n(n+1)/6](3n²+5n-2)
=n(n+1)(n+2)(3n-1)/6
2.
Sn=[1+1/a+1/a²+...+1/a^(n-1)]+3(1+2+...+n)-2n
=(1-1/aⁿ)/(1-1/a)+3n(n+1)/2 -2n
=(1-1/aⁿ)/(1-1/a)+n(3n-1)/2