(救命阿!)证明下列恒等式.2(sin2a+1)-----------------=1+tana1+sin2a+cos2
1个回答

1)

2(sin2α+1)

=2*2sinαcosα+2

=4sinαcosα+2

1+sin2a+cos2a

=1+2sinαcosα+2cos^2(α)-1

=2sinαcosα+2cos^2(α)

2(sin2α+1)/(1+sin2a+cos2a)

=(4sinαcosα+2)/(2sinαcosα+2cos^2(α))=(2sinαcosα+1)/(sinαcosα+cos^2(α))

=[(sinαcosα+cos^2(α))+(sinαcosα-cos^2(α)+1)]/sinαcosα+cos^2(α))

=1+(sinαcosα-cos^2(α)+1)/(sinαcosα+cos^2(α))

=1+(sinαcosα+sin^2(α))/(sinαcosα+cos^2(α))

=1+sinα(cosα+sinα)/[cosα(cosα+sinα)]

=1+sinα/cosα

=1+tanα

2)

2/sin2α

=1/(sinαcosα)

=[sin^(α)+cos^2(α)]/(sinαcosα)

=sinα/cosα+cosα/sinα

=tanα+cotα

3)

2sin^3(α)/(1-cosα)

=2sin^2(α)sinα/(1-cosα)

=2(1-cos^2(α))sinα/(1-cosα)

=2(1+cosα)sinα

=2sinα+2cosαsinα

=2sinα+sin2α

4)

3sinB=sin(2a+B)

→3sin[(a+B)-a]=sin[(a+B)+a]

sin(α±β)=sinα·cosβ±cosα·sinβ

所以,

3sin(a+B)cosa-3cos(a+B)sina=sin(a+B)cosa+cos(a+B)sina

得到

2sin(a+B)cosa=4cos(a+B)sina

sin(a+B)cosa=2cos(a+B)sina

两边同除cos(a+B)cosa

tan(a+B)=2tana