如图,在三角形ABC中,角ABC等于90度,AB等于90度,AB=4,BC=3,O是边A C上的一个动点,以点O为圆心作
1个回答

(1)证明:连接OD,

∵AP切半圆于D,∠ODA=∠PED=90°,

又∵OD=OE,

∴∠ODE=∠OED,

∴∠ADE=∠ODE+∠ODA,

∠AEP=∠OED+∠PED,

∴∠ADE=∠AEP,

又∵∠A=∠A,

∴△ADE∽△AEP;

∵△AOD∽△ACB,

0A

CA

OD

CB

AD

AB

,

∵AB=4,BC=3,∠ABC=90°,

∴根据勾股定理,得AC=

AB2+BC2

=5,

∴OD=

3

5

OA,AD=

4

5

OA,

∵△ADE∽△AEP,

AE

AP

AD

AE

=

DE

EP

,

∵AP=y,OA=x,AE=OE+OA=OD+OA=

8

5

OA,

AE

AP

AD

AE

=

4

5

OA

8

5

OA

=

1

2

,

则y=

16

5

x(0<x≤

25

8

);

情况1:y=

16

5

x,BP=4-AP=4-

16

5

x,

∵△PBF∽△PED,

BF

BP

ED

EP

,

又∵△ADE∽△AEP,

ED

EP

AE

AP

,

BF

BP

AE

AP

,

1

4−

16

5

x

8

5

x

16

5

x

,

解得:x=

5

8

,

∴AP=

16

5

x=2.

情况2:如图,半圆O的半径R较大时,EP交AB延长线于点P,P在B上方;交BC于点F,F在BC之间:

CF=BC-BF=3-1=2,

过点E作EG⊥BC,

则△CGE∽△CBA,

EG

AB

=

CG

BC

=

CE

AC

=

2

5

,

解得,EG=

8

5

,CG=

6

5

,

FG=FC-CG=2-

6

5

=

4

5

,

PB:EG=FB:FG,

PB=

8

5

÷

4

5

=2,

AP=AB+PB=4+2=6.

故线段AP的长为2或6.