因式分解:1、(x²-4x-12)(x²-4x+3)+56
2个回答

1、设x²-4x=y

则(x²-4x-12)(x²-4x+3)+56

=(y-12)(y+3)+56

=y²-9y+20

=(y-4)(y-5)

=(x²-4x-4)(x²-4x-5)

=(x+1)(x-5)(x²-4x-4)

2、(x-1)(x+2)(x-3)(x-6)+56

=[(x+2)(x-6)][(x-1)(x-3)]+56

=(x²-4x-12)(x²-4x+3)+56

之后的过程就和第1题一样,

结果是=(x+1)(x-5)(x²-4x-4)

3、(x²-7x+6)(x²-x-6)+56

=(x-6)(x-1)(x+2)(x-3)

=(x-1)(x+2)(x-3)(x-6)+56

之后的过程就和第2题一样,

结果是=(x+1)(x-5)(x²-4x-4)

4、(x+y)⁴-(x-y)⁴

=[(x+y)²]-[(x-y)²]²

=[(x+y)²+(x-y)²][(x+y)²-(x-y)²]

=(x²+2xy+y²+x²-2xy+y²){[(x+y)+(x-y)][(x+y)-(x-y)]}

=[2(x²+y²)]·(2x)·(2y)

=8xy(x²+y²)

5、ab(c²+d²)+cd(a²+b²)

=abc²+abd²+a²cd+b²cd

=ac·bc+ad·bd+ac·ad+bc·bd

=ac(bc+ad)+bd(ad+bc)

=(ac+bd)(ad+bc)

6、3a²x²-15a²xy-42a²y²

=3a²·x²-3a²·5xy-3a²·14y²

=3a(x²-5xy-14y²)

=3a²(x+2y)(x-7y)