1.设{an}是公比为q的等比数列,|q|>1,令bn=an+1(n=1,2,…),若数列{bn}有连接四项在集合{-5
2个回答

1.若数列{bn}有连续四项在集合{-53,-23,19,37,82}中

则:若数列{an}有连续四项在集合{-54,-24,18,36,81}

则这4个数必是18 -24 36 -54 公比为-9

6q=-54

2.(cos(nπ/3))^2-(sin(nπ/3))^2=cos(2nπ/3)

n=1,cos(2π/3)=-1/2

n=2,cos(4π/3)=-1/2

n=3,cos(6π/3)=1

以后cos取值三个一组循环.

三个一组分析,3n-2、3n-1、3n为一组

(3n)^2×(1)=(3n)^2×(1/2)+(3n)^2×(1/2)

分别与(3n-2)^2×(-1/2)和(3n-1)^2×(-1/2)相加

(3n)^2×(1/2)+(3n-2)^2×(-1/2)

=(1/2)×((3n)^2-(3n-2)^2)

=(1/2)×(3n+(3n-2))×(3n-(3n-2))

=(1/2)×(6n-2)×(2)

=6n-2

另一个同理

(3n)^2×(1/2)+(3n-1)^2×(-1/2)

=(1/2)×((3n)^2-(3n-1)^2)

=(1/2)×(3n+(3n-1))×(3n-(3n-1))

=(1/2)×(6n-1)×(1)

=3n-0.5

(3n-2)^2×(-1/2)+(3n-1)^2×(-1/2)+(3n)^2×(1)

=(1/2)×[(3n)^2-(3n-2)^2]+(1/2)×[(3n)^2-(3n-1)^2]

=(1/2)(3n+3n-2)(3n-3n+2)+(1/2)(3n+3n-1)(3n-3n+1)

=9n-2.5

也可以直接展开

Bn=9n-2.5

B1=A1+A2+A3 B2=A4+A5+A6 ……

S30共10组

S30=B1+B2+……+B10

用等差数列求和公式

B1=9×1-2.5=6.5

B10=9×10-2.5=87.5

S30=(B1+B10)×10/2=(6.5+87.5)×10/2=470

有不明白的百度I我,不常在