已知函数f(x)=6sin∧2x-6√3msinxcosx-2的定义域为〔0,2分之派],值域【-5,4】 g(x)=f
1个回答

已知函数f(x)=6sin∧2x-6√3msinxcosx-2的定义域为〔0,2分之派],值域【-5,4】 g(x)=f(x)+3cos(2x-三分之派),若m>0时,对任意的x1 x2∈〔0,二分之派〕,都有┆g(x1)-g(x2)┊<t,求实数t的取值范围

解析:∵函数f(x)=6sin∧2x-6√3msinxcosx-2=1-3(cos2x+√3msin2x)

令cosφ=√3m/√(1+3m^2),sinφ=1/√(1+3m^2)

∴f(x)=1-3√(1+3m^2)sin(2x+φ)

∵其的定义域为[0,π/2],值域【-5,4】

∴极小值点:2x+φ=2kπ+π/2==>x=kπ+π/4-φ/2

极大值点:2x+φ=2kπ-π/2==>x=kπ-π/4-φ/2

∴函数f(x)在[0,π/2]上有极小值为-5,最大值4

f(π/4-φ/2)=1-3√(1+3m^2)sin(π/2-φ+φ)=1-3√(1+3m^2)=-5==>m=±1

∵m>0,∴m=1

f(π/2)=1+3√(1+3m^2)sin(φ)=4

∴2sin(φ)=1==>φ=π/6

∴f(x)=1-6sin(2x+π/6)

∵g(x)=f(x)+3cos(2x-π/3)=1-6sin(2x+π/6) +3cos(2x-π/3)=1-3sin(2x+π/6)

对任意的x1 x2∈[0,二分之派],都有|g(x1)-g(x2)|<t

当x1=x2时,|g(x1)-g(x2)|=0

当x1为极大值点,x2为极小值点时,g(x1)=g(π/2)=4,g(x1)=g(π/6)=-2

∴|g(x1)-g(x2)|=6

06