如图,在矩形ABCD中,E是CD的中点,BE⊥AC交AC于F,过F作FG∥AB交AE于G.
收藏:
0
点赞数:
0
评论数:
0
4个回答

解题思路:在Rt△ABC中,BF⊥AC,根据射影定理可得BF2=AF•FC,所以只需证得BF=AG即可;由于E是CD中点,易证得△DAE≌△CBE,得AE=BE,由于GF∥AB,则△EGF也是等腰三角形,得EG=EF,进而可得AG=BF,由此得证.

证明:∵E是CD中点,

∴DE=CE;

在△DEA和△CEB中,

AD=BC

∠D=∠BCE

DE=CE

∴△DEA≌△CEB(SAS),即AE=BE;

∵GF∥AB,

∴[EG/AE=

EF

BE],即[AG/AE=

BF

BE],

∵AE=BE,则AG=BF;

在Rt△ABC中,BF⊥AC,则△ABF∽△BCF,

∴BF2=AF•FC,即AG2=AF•FC.

点评:

本题考点: 相似三角形的判定与性质;直角三角形全等的判定;矩形的性质.

考点点评: 此题主要考查的是全等三角形、相似三角形的判定和性质,能够发现AG、BF的等量关系是解答此题的关键.

点赞数:
0
评论数:
0
关注公众号
一起学习,一起涨知识