(1)
A=2
f(x)=2sin(ωx+φ)
图象过(0,√3)
sinφ=√3/2
φ=π/3
f(x)=2sin(ωx+π/3)
图象过(π/12,2)
sin(πω/12+π/3)=1
πω/12+π/3=π/2
ω=2
f(x)=2sin(2x+π/3)
(2)
g(x)=2sin[2(x+π/4)+π/3]=2sin[(π/2)+(2x+π/3)]=2cos(2x+π/3)
对称轴:
2x+π/3=kπ
x= - π/6+(kπ/2)
设对称中心为P(x,0)
2x+π/3=(π/2)+kπ
x=π/12+(kπ/2)
所以对称中心为:
( π/12+(kπ/2) ,0 )