设A(x1,y1),B(x2,y2)两点再抛物线y=2x^2上,l是AB的垂直平分线
2个回答

1.若l经过焦点F,则|FA|=Y1+1/2P,|FB|=Y2+1/2P,又F是AB中垂线L上一点,有|FA|=|FB|,所以,Y1=Y2,则AB平行于X轴,根据抛物线关于Y轴D对称,则X1=-X2 ,所以X1+X2=0

2.设l与y轴交与点c(0,b),只要求b的范围即可,

l的斜率为2,则AB的斜率为-1/2

即(y2-y1)/(x2-x1)=-1/2

2(x2^2-x1^2)/(x2-x1)=-1/2

得 x1+x2=-1/4

∵|CA|=|CB|

∴ x1^2+(y1-b)^2=x2^2+(y2-b)^2

x1^2+y1^2-2by1=x2^2+y2^2-2by2

b=(x2^2-x1^2+y2^2-y1^2)/2(y2-y1)[将x1^2=1/2y1,x2^2=1/2y2带入]

=(1/2y2-1/2y1+y2^2-y1^2)/2(y2-y1)

=1/4+1/2(y1+y2)

=1/4+x1^2+x2^2

∵x1^2+x2^2>2x1x2(x1≠x2)

∴2(x1^2+x2^2)>(x1+x2)^2

∴x1^2+x2^2>[(x1+x2)^2]/2

b>1/4+[(x1+x2)^2/]2

=1/4+1/32

=9/32