设函数f(x)=(根号(x^2+1))-ax,当a≥1时,试证明函数f(x)在区间[0,+∞]上是单调函数.
2个回答

问题1:

任取x1,x2 ,使得0<x1<x2

F(x1)= √¯x1^2+1¯-ax1

F(x2)= √¯x2^2+1¯-ax2

F(x1)- F(x2)=√¯x1^2+1¯-ax1-√¯x2^2+1¯+ax2

=(√¯x1^2+1¯-√¯x2^2+1¯) –a(x1-x2)

=(√¯x1^2+1¯-√¯x2^2+1¯) (√¯x1^2+1¯+√¯x2^2+1¯)/ (√¯x1^2+1¯+√¯x2^2+1¯) –a(x1-x2)

=( x1^2- x2^2) / (√¯x1^2+1¯+√¯x2^2+1¯) –a(x1-x2)

=(x1+x2)(x1-x2) / (√¯x1^2+1¯+√¯x2^2+1¯) –a(x1-x2)

=(x1-x2)( x1+x2–a√¯x1^2+1¯–a√¯x2^2+1¯) / (√¯x1^2+1¯+√¯x2^2+1¯)

=(x1-x2)( √¯x1^2¯–a√¯x1^2+1¯+√¯x2^2¯–a√¯x2^2+1¯) / (√¯x1^2+1¯+√¯x2^2+1¯)

∵0<x1<x2,a≥0

∴x1-x2<0,√¯x1^2¯–a√¯x1^2+1¯<0,√¯x2^2¯–a√¯x2^2+1¯<0

∴F(x1)- F(x2)>0

∴F(x1)> F(x2)

∴f(x)= √¯x^2+1¯-ax在区间[0,+∞]上是单调递减函数(a≥0)

问题2:

F(x1)- F(x2)=√¯x1^2+1¯-ax1-√¯x2^2+1¯+ax2

=(x1-x2)( √¯x1^2¯–a√¯x1^2+1¯+√¯x2^2¯–a√¯x2^2+1¯) / (√¯x1^2+1¯+√¯x2^2+1¯)

∵0<a<1 ∴0