高一数学,求各种值域的方法
1个回答

一、配方法

通过配方结合函数图像求函数的值域,一般地,对于二次函数 求值域问题可运用配方法.

例1、 求 的值域

于是 的值域为 .

二、反函数法

一般地,形如 ,可利用原函数与反函数的定义域和值域之间的互逆关系.

例2、 求函数 的值域.

由 得 ,因为 ,所以 .

于是此函数的值域为

三、分离常数法

一般地,对于分式函数来说,可以分离一个常数去求函数的值域.

例3、 求 的值域

即 ,所以

即函数 的值域为 .

注意:例2也可以利用分离常数法去求值域,有兴趣的读者可以试一试.

四.判别式法

一般地.形如 ,转化为关于y的一元二次方程,利用方程有实数解,来求y.

例4、 求 的值域.

由 去分母得

当y=2时,此方程无实根.

当 ,此方程为一元二次方程,

所以 ,又因为 ,于是

故函数 的值域为

注意:下面2点不能直接用判别式法.

1、定义域去掉无限个点.2、分子分母中含有公因式.

五、换元法

一般地,形如 ,通过换元 (注意此时t的范围)

例5求 的值域

所以 =

当t=0时,y有最小值3.

于是 的值域为 .

六、分类讨论法

通过分类讨论函数定义域x的符号去求值域.

例6求 的值域

解;

因为 ,所以 ,即

而 即

综上:的值域为 .