已知函数f(x)=ax^2+1/bx+c(a,b,c属于R)是奇函数,f(1)=2,f(2)=3 (1)求a,b,c的值
1个回答

∵函数f(x)=﹙ax2+1﹚/﹙bx+c﹚(a,b,c∈N)是奇函数

∴f﹙﹣x)=[a﹙-x﹚²+1]/[b﹙﹣x﹚+c]≡﹣f(x)=﹣﹙ax2+1﹚/﹙bx+c﹚

即﹙ax²+1﹚/﹙﹣bx+c﹚≡﹙ax²+1﹚/﹙﹣bx-c﹚

∴,c=-c

∴c=0

即f(x)=﹙ax2+1﹚/﹙bx﹚

∵f(1)=2,

∴﹙a+1﹚/b=2,

∴a+1=2b

f(2)=3

∴﹙4a+1﹚/﹙2b﹚=3

,4a+1=6b

∴a=2,b=3/2

即f(x)=﹙2x²+1﹚/﹙3/2·x﹚=)=﹙4/3·x²+2/3﹚/x

设√2/2<x1<x2,则x1-x2<0

f(x1)-f(x2)=)=﹙4/3x1²+2/3﹚/x1)-﹙4/3x2²+2/3﹚/x2

=4/3﹙x1-x2﹚+2/3﹙x2-x1﹚/﹙x1x2﹚

=4/3﹙x1-x2﹚[1-1/﹙2x1x2﹚]

∵√2/2<x1<x2

∴x1x2>1/2

∴0<1/x1x2<2

∴0<1/﹙2x1x2﹚<1

∴1-1/﹙2x1x2﹚>0

∴f(x1)-f(x2)<0

∴f(x)=﹙4/3x²+2/3﹚/x当x>√2/2时递增