(1)证明:∵AD∥BC,
∴AD∥CE.
又∵DE∥AC,
∴四边形ACED是平行四边形.
(2)若AD=3,BC=7,求梯形ABCD的面积
过D点作DF⊥BE于F点,(5分)
∵DE∥AC,AC⊥BD,
∴DE⊥BD,即∠BDE=90°.(6分)
由(1)知DE=AC,CE=AD=3,
∵四边形ABCD是等腰梯形,
∴AC=DB.(7分)
∴DE=DB.(8分)
∴△DBE是等腰直角三角形,
∴△DFB也是等腰直角三角形.
∴DF=BF=
1/2
(7-3)+3=5.(10分)
(也可运用:直角三角形斜边上的中线等于斜边的一半)
S梯形ABCD=
1/2 (AD+BC)•DF=1/2(7+3)×5=25.