已知椭圆a的二次方分之x的二次方+b的二次方之y的二次方=1(a>b>0)的离心率e=2分之根号3,A,B分别为椭圆的长
7个回答

e=c/a=√3/2

c^2/a^2=3/4 (1)

|OM|=√5/2,AB=√5,a^2+b^2=5 (2)

a^2=b^2+c^2

a^2=4,b^2=1,c^2=3

椭圆方程x^2/4+y^2=1

设过(-1,0)的方程是y=k(x+1)

代入椭圆得

x^2/4+k^2(x+1)^2=1

(1/4+k^2)x^2+2k^2x+k^2-1=0

x1+x2=-2k^2/(1/4+k^2)

x1x2=(k^2-1)/(1/4+k^2)

PQ=√[(x1-x2)^2+(y1-y2)^2]

=√(1+k^2)*√(x1-x2)^2

=√(1+k^2)*√[(x1+x2)^2-4x1x2]

=√(1+k^2)*√[(-2k^2/(1/4+k^2))^2-4(k^2-1)/(1/4+k^2)]

原点到直线的距离为d=|k|/√(1+k^2)

所以S△POQ=1/2*d*PQ

=k/2*√[(-2k^2/(1/4+k^2))^2-4(k^2-1)/(1/4+k^2)]

=k/2*√[(-2k^2/(1/4+k^2))^2-4(k^2-1)/(1/4+k^2)]

=k/(1/2+2k^2)*√[4k^4-4(k^2-1)(1/4+k^2)]

=k/(1/2+2k^2)*√[4k^4-(k^2-1)(1+4k^2)]

=k/(1/2+2k^2)*√[4k^4-k^2-4k^4+1+4k^2]

=k/(1/2+2k^2)*√(3k^2+1)

=1/2*√[k^2(3k^2+1)]/(1+4k^2)^2]

令k^2=t

R=[k^2(3k^2+1)]/(1+4k^2)^2

=t(3t+1)/(1+4t)^2

(1+4t)^2*R=t(3t+1)

整理得

(16R-3)t^2+(8R-1)t+R=0

由于k^2≥0且存在

所以△=(8R-1)^2-4*(16R-3)*R≥0

64R^2-16R+1-64R^2+12R≥0

R≤1/4

因此

S=1/2*√R

≤1/2*1/2

=1/4

即面积最大值是1/4