求解不定积分一题∫((x-cosx)/(sinx+1))dx
3个回答

解题说明:利用三角函数之间的关系,可对分子分母同时乘以(1-sinx),将分母简化.

∫[(x-cosx)/(sinx+1)]dx

=∫{[(x-cosx)(1-sinx)]/[(1-sinx)(sinx+1)]}dx

=∫{[(x-cosx)(1-sinx)]/[(1-(sinx)^2]}dx

=∫[(x-xsinx-cosx+sinxcosx)/(cosx)^2]dx

=∫x(secx)^2 dx - ∫x tanx secx dx - ∫secx dx + ∫tanx dx

=∫x d(tanx) - ∫x d(secx) - ∫secx dx + ∫tanx dx

=(xtanx -∫tanx dx)-(xsecx -∫secx)dx -∫secx dx +∫tanx dx

=xtanx - xsecx + C