如图,半径为r 1 的圆内切于半径为r 2 的圆,切点为P,过圆心O 1 的直线与⊙O 2 交于A、B,与⊙O 1 交于
1个回答

设AC,CD,DB分别是3x,4x,2x,

则r 1=2x,

根据两圆相切,切点一定在连心线上,

则作直线O 2O 1,一定经过点P,交圆于另一点E,

根据相交弦定理,得r 1•(2r 2-r 1)=O 1A•O 1B,

则r 2=6x

r 1

r 2 =

1

3 .