1、已知A、B是锐角,且sinA=√5/5,sinB=√10/10.求A+B的值
1个回答

1.∵A、B是锐角

∴cosA=√[1-(sinA)^2]=2√5/5 ,cosB=√[1-(sinB)^2]=3√10/10

cos(A+B)=cosAcosB-sinAsinB=√2/2

A+B=45º

2.sinA+cosA=√2sin(A + π/4)=tanA

∵0<A<π/2

∴π/4<A+π/4<3π/4

则√2/2<sin(A+π/4)<1

∴1<tanA<√2

π/4<tanA<arctan√2 ,约为(π/4,π/3) ,选C

3.tan(A-B)=(tanA-tanB)/(1+tanA*tanB)

1 - [(tanA-tanB)/(1+tanA*tanB)]/tanA = (sinC)^2/(sinA)^2

[(tanA)^2*tanB+tanB] / [tanA(1+tanA*tanB)] = (sinC)^2/(sinA)^2

tanB*(secA)^2 / tanA(1+tanA*tanB) = (sinC)^2/(sinA)^2 ,(其中1 + tan^2A=sec^2A)

tanB*(secA)^2*(sinA)^2 = tanA(1+tanA*tanB)*(sinC)^2

tanB*tanA = (1+tanA*tanB)*(sinC)^2 ,(两边除以tanA)

(tanB*tanA+1) - 1 = (1+tanA*tanB)*(sinC)^2

1 - 1/(1+tanA*tanB) = (sinC)^2

1 - (sinC)^2 = 1/(1+tanA*tanB)

(cosC)^2 = 1/(1+tanA*tanB)

1/(secC)^2 = 1/(1+tanA*tanB)

(secC)^2 = 1+ tanA*tanB

(secC)^2-1=tanA*tanB

(tanC)^2=tanA*tanB

4.原式=[sinAcos(π/6)+cosAsin(π/6)]^2+[sinAcos(π/6)-cosAsin(π/6)]^2-(sinA)^2

=[(√3/2)sinA + (1/2)cosA]^2 + [(√3/2)sinA - (1/2)cosA]^2 - (sinA)^2

=3(sinA)^2/2 + (cosA)^2/2 - (sinA)^2=1/2*[(sinA)^2 + (cosA)^2]

=1/2

5.①原式=2sin20°cos20°cos40°cos80°/ 4sin20°

=sin40°cos40°cos80°/ 4sin20°

=sin80°cos80°/ 8sin20°

=sin160°/ 16sin20°

=sin(180°-20°)/16sin20°

=1/16

②原式=sin(90°-24°)sin(90°-48°)sin6°sin(90°-12°)

=cos24°cos48°sin6°cos12°

=2sin6°cos6°cos12°cos24°cos48°/2cos6°

=sin12°cos12°cos24°cos48°/2cos6°

=sin24°cos24°cos48°/4cos6°

=sin48°cos48°/8cos6°

=sin96°/16cos6°

=1/16

③原式=sin67.5°/cos67.5° - sin22.5°/cos22.5°

=cos22.5°/sin22.5° - sin22.5°/cos22.5°

=[(cos22.5°)^2 - (sin22.5°)^2] /(sin22.5°*cos22.5°)

=cos45°/ [(1/2)*sin45°]

=2

④原式=1/2 * [cos(5π/12 + π/12) + cos(5π/12 - π/12)]

=1/2 * [cos(π/2)+cos(π/3)]

=1/2 * [0 + 1/2]

=1/2 * 1/2

=1/4

6.原式=[(1+sinA-cosA)^2+(1+sinA+cosA)^2] / (1+sinA+cosA)(1+sinA-cosA)

展开,整理后=4(1+sinA) / 2sinA(sinA+1)

=2/sinA

7.sin(π/4+A)sin(π/4-A)=(-1/2){cos[(π/4+A)+(π/4-A)] - cos[(π/4+A)-(π/4-A)]}

=(-1/2)[cos(π/2) - cos2A] =(1/2)cos2A=1/6

cos2A=1/3

∵π/2<A<π

∴π<2A<2π

sin2A=-√[1-(cos2A)^2]=-2√2/3

sin4A=2sin2A*cos2A=-4√2/9

8.tan2B=2tanB / 1 - (tanB)^2 =3/4

tan(A+2B)=(tanA + tan2B) / (1 - tanAtan2B) =1

∵A、B都为锐角

∴A+2B∈(0,270°)

A+2B=45°或A+2B=225°

9.原式=(1 - cos40°)/2 + (1 + cos160°)/2 + √3/2*(sin100°-sin60°)

=1 + (cos160°- cos40°)/2 + √3/2*sin100°- 3/4

=1 - sin[(160°+ 40°)/2]*sin[(160°- 40°)/2] + √3/2*sin100°- 3/4

=1 - sin100°sin60° + √3/2*sin100°- 3/4

=1/4

10.原式=[2sin50° + sin10°(cos10°+√3sin10°)/cos10°]×√2sin80°

= [2sin50°cos10° + 2sin10°(cos60°cos10°+sin60°sin10°)×√2sin80°/cos10°

=2[sin50°cos10° + sin10°cos(60°-10°)]×√2

= 2sin(50°+10°)×√2

= √6

11.原式=cos[2(π/3+A)]

=2[cos(π/3+A)]^2 - 1

=2{sin[π/2-(π/3+A)]}^2 - 1

=2[sin(π/6-A)]^2 - 1

=-7/9

12.tan(π/4+A) = [tan(π/4)+tanA] / [1-tan(π/4)tanA] =3

解得:tanA=1/2

sin2A - 2(cosA)^2=sin2A - (1+cos2A) =sin2A - cos2A - 1

=(2tanA)/[1+(tanA)^2] - [1-(tanA)^2]/[1+(tanA)^2] - 1

=-4/5

13.∵在△ABC中,B=π/3

∴A+C=2π/3 则(A+C)/2 =π/3

∵tan(A/2 + C/2) =[tan(A/2) + tan(C/2)] / [1 - tan(A/2)tan(C/2)] =tan(π/3)=√3

∴tan(A/2) + tan(C/2) = √3*[1 - tan(A/2)tan(C/2)]

√3*[1 - tan(A/2)tan(C/2)] = √3 - √3*tan(A/2)tan(C/2)

即:tan(A/2) + tan(C/2) + √3*tan(A/2)tan(C/2) = √3

14.原式=√[2(cos5°)^2]=(√2)cos5°

15.cos(A-π/6) + sinA = cosAcos(π/6) + sinAsin(π/6) + sinA

=cosAcos(π/6) + (1/2)sinA + sinA

=(√3/2)cosA + (3/2)sinA =4√3/5

则(1/2)cosA + (√3/2)sinA = 4/5

即:sin(A + π/6)=4/5

sin(A + 7π/6)=sin[π+(A + π/6)]=-sin(A + π/6)=-4/5

16.题目是不是应该“已知3sinB=sin(2A+B) ,求证:tan(A+B)=2tanA”这样呀?如果是的话,证明如下:

3sinB=sin(2A+B)

3sin[(A+B)-A] = sin[(A+B)+A]

3[sin(A+B)cosA - cos(A+B)sinA] = sin(A+B)cosA + cos(A+B)sinA

3sin(A+B)cosA - 3cos(A+B)sinA = sin(A+B)cosA + cos(A+B)sinA

2sin(A+B)cosA = 4cos(A+B)sinA

tan(A+B)=2tanA