1.已知△ABC,AD平分∠BAC,CE⊥AD交AB于E,EF‖BC,交AC于F.求证∠FEC=∠CED
2个回答

1.设AD跟CE的交点为O

∵AD平分∠BAC,∴∠EAO=∠CAO

∵CE⊥AD,∴∠AOE=∠AOC=90度

∴∠AEO=∠ACO,∴△AOE≌△AOC,∴OE=OC

∵CE⊥AD,∴∠EOD=∠COD

∵OD=OD,∴△EOD≌△COD,∴∠OED=∠OCD

∵EF‖BC,∴∠FEC=∠ECD

∴∠FEC=∠CED

2.∵ED垂直平分AC,∴CD=AC,∠CDE=∠ADE=90度,ED=ED,

∴△CDE≌△ADE,∴∠EAD=∠ECD

∵∠B=90度,∠EAB:∠BAC=2:5,∠EAD=∠ECD

∴∠EAD+∠ECD+∠EAB=90度,∠EAB:∠BAC:∠ECD=2:5:3

∴∠C=33度45分

3.设AD跟EF的交点为O

∵AD是EF的垂直平分线,∴EO=FE,∠EOD=∠FOD=90度

∵OD=OD,∴△EOD≌△FOD,∴∠OED=∠OFD,OE=OF

∵AO=AO,∠AOE=∠AOF=90度,∴△AOE≌△AOF

∴∠AEO=∠AFO,∴∠AED=∠AFD

∴∠BED=∠DFC

绝对正确~给分吧~不给不厚道~