已知:tanx=m,求(3sinx+sin3x)/(3cosx+cos3x)的值.
2个回答

(m^3+3m)/2

解:因为sin3x=3sinx-4sinx^3, cos3x=4cosx^3-3cosx,所以

(3sinx+sin3x)/(3cosx+cos3x)=(6sinx-4sinx^3)/(4cosx^3)

=(3tanx)/(2cosx^2)-tanx^3`````````(1),

又tanx=sinx/cosx=(根号1-cosx^2)/cosx=m 得cosx^2=1/(m^2+1),

代入(1)中即得(3sinx+sin3x)/(3cosx+cos3x)=(m^3+3m)/2.

注:sinx^3即为sinx的3次方,m^3即m的3次方,其它同理.