1.因:AB=5,BC=3,AC=4 所以:BC+AC=AB,三角形ABC是RT△:BC垂直AC故S△ABC=ACxBC/2=3x4/2=6,要使△PQC的面积与四边形PABQ的面积相等;即S△PQC=S△ABC/2
PCxCQ/2=1/2 x ACxBC/2 PCxCQ=ACxBC/2 .①
又因PQ//AB △CPQ∽ △CAB 所以 PC/AC=CQ/CB CQ=CBx PC/AC.②
把②代入①式得:PCxCBx PC/AC=ACxBC/2
PC= AC/2 PC= 4/2= 8 PC=2√2
2.因:PQ//AB △CPQ∽ △CAB 所以 PC/AC=CQ/CB=PQ/AB
设PC=a,a/4=CQ/3= PQ/5 故CQ=3a/4 PQ=5a/4
△PQC的周长L1=PC+CQ+PQ= a+3a/4+5a/4=3a
四边形PABQ的周长L2=AB+BQ+PQ+AP=5+(3-3a/4)+5a/4+(4-a)=12-a/2
当L1=L2时,即3a=12-a/2 7a/2=12 a=24/7
当△PQC的周长与四边形PABQ的周长相等时,PC=24/7.