sinx/x 零到正无穷的定积分怎么求
4个回答

对sinx泰勒展开,再除以x有:

sinx/x=1-x^2/3!+x^4/5!+…+(-1)^(m-1)x^(2m-2)/(2m-1)!+o(1)

两边求积分有:

∫sinx/x·dx

=[x/1-x^3/3·3!+x^5/5·5!+…+(-1)^(m-1)x^(2m-1)/(2m-1)(2m-1)!+o(1)]

从0到无穷定积分

则将0,x(x→00)(这里的x是一个很大的常数,可以任意取)代入上式右边并相减,通过计算机即可得到结果

以上只是个人意见,以下是高手的做法:

(高手出马,非同凡响!)

考虑广义二重积分

I=∫∫ e^(-xy) ·sinxdxdy

D

其中D = [0,+∞)×[0,+∞),

今按两种不同的次序进行积分得

I=∫sinxdx ∫e^(-xy)dy

0 +∞ 0 +∞

= ∫sinx·(1/x)dx

0 +∞

另一方面,交换积分顺序有:

I=∫∫ e^(-xy) ·sinxdxdy

D

=∫dy ∫e^(-xy)·sinxdx

0 +∞ 0 +∞

=∫dy/(1+y^2)=arc tan+∞-arc tan0

0 +∞

= π/2

所以:

∫sinx·(1/x)dx=π/2

0 +∞