已知f(x)是定义域为正整数集的函数,对于定义域内任意的k,若f(k)≥k2成立,则f(k+1)≥(k+1)2成立,下列
1个回答

解题思路:由题意对于定义域内任意的k,若f(k)≥k2成立,则f(k+1)≥(k+1)2成立的含义是对前一个数成立,则能推出后一个数成立,反之不成立.

对A,当k=1或2时,不一定有f(k)≥k2成立;对B,应有f(k)≥k2成立;

对C,只能得出:对于任意的k≥7,均有f(k)≥k2成立,不能得出:任意的k<7,均有f(k)<k2成立;对D,∵f(4)=25≥16,∴对于任意的k≥4,均有f(k)≥k2成立.故选D

点评:

本题考点: 函数单调性的性质.

考点点评: 本题考查对命题的理解,本题体现的是一种递推关系.