一道高中数学竞赛问题(关于不等式)
2个回答

设截距式:x/a+y/b=1(a>0,b>0)

于是1/a+2/b=1

由此,以及AM-GM不等式知:

|AB|^2=a^2+b^2=(a^2+b^2)(1/a+2/b)^2

=4(a/b)^2+(b/a)^2+4(a/b)+4(b/a)+5

=[4(a/b)^2+2(b/a)+2(b/a)]+[(b/a)^2+2(a/b)+2(a/b)]+5

>=3[4(a/b)^2*2(b/a)*2(b/a)]^(1/3)+3[(b/a)^2*2(a/b)*2(a/b)]^(1/3)+5

=6*2^(1/3)+3*4^(1/3)+5

当a/b=(1/2)^(1/3) 时取到等号.

即|AB|最小值[6*2^(1/3)+3*4^(1/3)+5]^(1/2)