∫ 1/sinxcos^4 x dx
=∫(sin^2 x +cos^2 x) /sinxcos^4 x dx
=∫sinx/cos^4 dx +∫1/sinxcos^2 x dx
=-∫dcosx/cos^4 dx +∫ (sin^2 x+cos^2 x)/sinxcos^2 x dx
=1/3cos^3 x +∫sinx/cos^2 x dx +∫1/sinx dx
=1/3cos^3 x -∫dcosx/cos^2 x +∫csc dx
=1/3cos^3 x +1/cosx +ln|cscx -cotx| +C