显然有a点乘b = 0
则有向量a和b垂直
已知x=向量a+(t^2-3)b,y=-ka+tb,
则有x点乘y = (a+(t^2-3)b) 点乘(-ka+tb)
=-ka^2 +tab -k(t^2-3)ab +t(t^2-3)b^2
=-ka^2 + t(t^2-3)b^2 (ab =0)
= -4k + t(t^2-3) (a^2 = |a|^2 = 4,b^2= |b|^2 = 1)
=0
所以有k = t(t^2-3)/4
把k代入(k+t^2)/t
得到(k+t^2)/t
=k/t+t=(t^2 -3)/4+t
=1/4*(t+2)^2 - 7/4
>= -7/4
所以最小值为-7/4(t=-2时取到)