已知sinA+cosA=1/5,A∈(0,π),求sinA,cosA及sin^3A+cos^3A
1个回答

1)sinA+cosA=1/5.(1)

(sinA+cosA)^2=1/25

1+2sinAcosa=1/25

sinAcosA=-12/25.(2)

(sinA-cosA)^2=1-2sinAcosA=1-2*(-12/25)=49/25

A∈(0,π),

sinA-cosA=±7/5

由(2)式知

cosA0

sinA-coaA=7/5.(3)

(1)+(3)得

sinA=4/5

(1)-(2)得

cosA=-3/5

sin^3A+cos^3A

=(sinA+coaA)(sin^2A+coa^2A+sinAcosA)

=(4/5-3/5)(1-12/25)

=1/5*13/25

=13/125