已知椭圆C:x²/4+y²=1,直线l与椭圆C相交于A.B两点,OA•OB=0(其中O为
1个回答

OA•OB=0

向量OA与向量OB垂直

设A(a,b),B(kb,-ka)

则a^2/4+b^2=1,k^2*b^2/4+K^2*a^2=1

a^2+4b^2=4,k^2=4/(4a^2+b^2)

k^2+1=(4+4a^2+b^2)/(4a^2+b^2)=(a^2+4b^2+4a^2+b^2)/(4a^2+b^2)=5(a^2+b^2)/(4a^2+b^2)

直线AB:(ka+b)x-(a-kb)y-k(a^2+b^2)=0

1.

点O到直线AB的距离:

d=|k|*(a^2+b^2)/√[(ka+b)^2+(a-kb)^2]

=|k|*(a^2+b^2)/√[(k^2+1)*(a^2+b^2)]

=√[k^2*(a^2+b^2)/(k^2+1)]

=√[4*(a^2+b^2)/(5^2+5b^2)]

=2√5/5

2.

解法1

令a=2cosθ,b=sinθ

m=|OA|•|OB|

=√[(a^2+b^2)*k^2(a^2+b^2)]

=√[4(a^2+b^2)^2/(4a^2+b^2)]

=√[4(3cosθ^2+1)^2/(15cosθ^2+1)]

m^2/4=(9cosθ^4+6cosθ^2+1)/(15cosθ^2+1)

=9/15*cosθ^2+81/225+144/225/(15cosθ^2+1)

=9/225*(15cosθ^2+1)+72/225+144/225/(15cosθ^2+1)

=36/225*[(15cosθ^2+1)/4+4/(15cosθ^2+1)]+72/225

>=72/225+72/225=16/25

|OA|•|OB|最小值为8/5

此时(15cosθ^2+1)/4=4/(15cosθ^2+1)

15cosθ^2+1=4,cosθ^2=1/5

a^2=b^2=4/5,k^2=1

解法2

|OA|•|OB|=|AB|*d

=2√5/5*√[(a-kb)^2+(b+ka)^2]

=2√5/5*√[(k^2+1)(a^2+b^2)]

=2√[(a^2+b^2)^2/(4a^2+b^2)]……

检查结束

解法3(特简单)

m=|OA|•|OB|=|AB|*d

=d√(|OA|^2+|OB|^2)

>=d√2|OA|•|OB|

m^2>=2md^2

m>=2d^2=8/5

此时|OA|=|OB|,k^2=1……