已知定义域为[0,1]的函数f(x)同时满足:
1个回答

证明:(Ⅰ)设0≤x 1<x 2≤1,则x 2-x 1∈(0,1)

∴f(x 2-x 1)>0

∴f(x 2)-f(x 1)=f[(x 2-x 1)+x 1]-f(x 1)=f(x 2-x 1)+f(x 1)-f(x 1)=f(x 2-x 1)>0

即f(x 2)>f(x 1

故f(x)在[0,1]上是单调递增的

(Ⅱ)因f(x)在x∈[0,1]上是增函数,则f(x)≤f(1)=1⇒1-f(x)≥0,

当f(x)≤f(1)=1时,容易验证不等式成立;

当f(x)<1时,则

4 f 2 (x)-4(2-a)f(x)+5-4a≥0⇒a≤

4 f 2 (x)-8f(x)+5

4-4f(x) 对x∈[0,1]恒成立,

设 y=

4 f 2 (x)-8f(x)+5

4-4f(x) =1-f(x)+

1

4[1-f(x)] ≥1 ,从而则a≤1

综上,所求为a∈(-∞,1];

(Ⅲ)令S n=

1

2 2 +

2

2 3 +

3

2 4 +…+

n

2 n+1 ----------①,

1

2 S n =

1

2 3 +

2

2 4 +

3

2 5 +…+

n

2 n+2 --------------②,

由①-②得,

1

2 S n =

1

2 2 +

1

2 3 +

1

2 4 +…+

1

2 n+1 -

n

2 n+2 ,即,S n=

1

2 +

1

2 2 +

1

2 3 +…+

1

2 n -

n

2 n+1 = 1-

1

2 n -

n

2 n+1 <1

所以 f(

1

2 2 +

2

2 3 +…+

n

2 n+1 )<f(1)=1 .