1、设x=a/(ab+a+1)+b/(bc+b+1)+c/(ac+c+1) (1)
三项的分子和分母分别同乘以c,a,b,得
x=ac/(abc+ac+c)+ab/(abc+ab+a)+bc/(abc+bc+b)
=ac/(1+ac+c)+ab/(1+ab+a)+bc/(1+bc+b) (2)
(1)的分子和分母分别同乘以bc,ac,ab,得
x=abc/(ab^2c+abc+bc)+abc/(abc^2+abc+ac)+abc/(a^2bc+abc+ab)
=1/(b+1+bc)+1/(c+1+ac)+1/(a+1+ab) (3)
(1)+(2)+(3)得:
3x=a/(ab+a+1)+b/(bc+b+1)+c/(ac+c+1)
+ac/(1+ac+c)+ab/(1+ab+a)+bc/(1+bc+b)
+1/(b+1+bc)+1/(c+1+ac)+1/(a+1+ab)
=3
则x=1,即:a/(ab+a+1)+b/(bc+b+1)+c/(ac+c+1)=1
2、本题应该是题目有误,按a+b+c=1算不出确定的值,应该改为a+b+c=0
a+b+c=0,
b+c=-a,(b+c)^2=b^2+c^2+2bc=(-a)^2=a^2
b^2+c^2-a^2=-2bc
a+c=-b,(a+c)^2=a^2+c^2+2ac=(-b)^2=b^2
a^2+c^2-b^2=-2ac
a+b=-c,(a+b)^2=a^2+b^2+2ab=(-c)^2=c^2
a^2+b^2-c^2=-2ab
所以 bc/(b^2+c^2-a^2)+ac/(c^2+a^2-b^2)+ab/(a^2+b^2-c^2)
=bc/(-2bc)+ac/(-2ac)+ab/(-2ab)
=-1/2-1/2-1/2
=-3/2