1、abc=1 求a/(ab+a+1)+b/(bc+b+1)+c/(ac+c+1)2、已知a+b+c=1,且abc≠0
5个回答

1、设x=a/(ab+a+1)+b/(bc+b+1)+c/(ac+c+1) (1)

三项的分子和分母分别同乘以c,a,b,得

x=ac/(abc+ac+c)+ab/(abc+ab+a)+bc/(abc+bc+b)

=ac/(1+ac+c)+ab/(1+ab+a)+bc/(1+bc+b) (2)

(1)的分子和分母分别同乘以bc,ac,ab,得

x=abc/(ab^2c+abc+bc)+abc/(abc^2+abc+ac)+abc/(a^2bc+abc+ab)

=1/(b+1+bc)+1/(c+1+ac)+1/(a+1+ab) (3)

(1)+(2)+(3)得:

3x=a/(ab+a+1)+b/(bc+b+1)+c/(ac+c+1)

+ac/(1+ac+c)+ab/(1+ab+a)+bc/(1+bc+b)

+1/(b+1+bc)+1/(c+1+ac)+1/(a+1+ab)

=3

则x=1,即:a/(ab+a+1)+b/(bc+b+1)+c/(ac+c+1)=1

2、本题应该是题目有误,按a+b+c=1算不出确定的值,应该改为a+b+c=0

a+b+c=0,

b+c=-a,(b+c)^2=b^2+c^2+2bc=(-a)^2=a^2

b^2+c^2-a^2=-2bc

a+c=-b,(a+c)^2=a^2+c^2+2ac=(-b)^2=b^2

a^2+c^2-b^2=-2ac

a+b=-c,(a+b)^2=a^2+b^2+2ab=(-c)^2=c^2

a^2+b^2-c^2=-2ab

所以 bc/(b^2+c^2-a^2)+ac/(c^2+a^2-b^2)+ab/(a^2+b^2-c^2)

=bc/(-2bc)+ac/(-2ac)+ab/(-2ab)

=-1/2-1/2-1/2

=-3/2