(1)点C的坐标为(3,0)
∵点A、B的坐标分别为A(8,0),B(0,6),
∴可设过A、B、C三点的抛物线的解析式为y=a(x-3)(x-8)
将x=0,y=6代A抛物线的解析式,得a=
,
∴过A、B、C三点的抛物线的解析式为y=
x 2-
x+6;
(2)可得抛物线的对称轴为
,顶点D的坐标为
,
设抛物线的对称轴与x轴的交点为G,
直线BC的解析式为y=-2x+6,
设点P的坐标为(x,-2x+6),
如图,作OP∥AD交直线BC于点P,连接AP,作PM⊥x轴于点M
∵OP∥AD,
∴∠POM=∠CAD,tan∠POM=tan∠GAD,
∴
,即
,
解得x=
,经检验x=
是原方程的解,
此时点P的坐标为
,
但此时OM=
,GA=
,OM
∵
,
∴OP
∴直线BC上不存在符合条件的点P;
(3)|QA-QO|的取值范围是0≤x≤4。
说明:如图,由对称性可知QO=QH,|QA-QO|=|QA-QH|,
当点Q与点B重合时,Q、H、A三点共线,|QA-QO|取得最大值4(即为AH的长);
设线段OA的垂直平分线与直线BC的交点为K,当点口与点K重合时,|QA-QO|取得最小值0。