f(x)=(6cos^4x+5sin^2x-4)/cos2x
=(6cos^4x+5(1-cos^2x)-4)/cos2x
=(6cos^4x-5cos^2x+1) /cos2x
=(2 cos^2x -1)(3 cos^2x -1) /cos2x
= cos2x(3 cos^2x -1) /cos2x
=3 cos^2x -1
=3(1 +cos2x )/2-1
=3cos2x/2+1/2,
定义域为cos2x不=0,即x不=TT/4+kTT/2
显然f(x)是偶函数.值域为[-1,2]且不等于1/2