计算定积分 ∫(1→根号3)[1/{x²根号下(1+x²)}]dx
2个回答

此题用三角代换(换元法)

令x=tant, 则 dx=sec²tdt

∵x∈[1,√3]

∴不妨令t∈[π/4,π/3](在此区间上,x随t单增,sect≥0)

原积分=∫(π/4,π/3) sec²tdt/(tan²t·sect)

=∫(π/4,π/3) sectdt/tan²t

=∫(π/4,π/3) dt/(tan²t·cost)

=∫(π/4,π/3) costdt/sin²t

=∫(π/4,π/3) d(sint)/sin²t

=[-1/sint]|(π/4,π/3)

=√2-2/√3

=√2-√6/3

希望我的解答对你有所帮助