数列难题 为什么?12.已知数列{an}的前n项和Sn=n^2(n∈N),数列{bn}为等比数列,且满足b1=a1,2b
2个回答

1问:

n≥2时 an=Sn-S(n-1)

=n²-(n-1)²

=2n-1n=1时,

n=1时,a1=S1=1上式成立

∴an=2n-1

∵数列{bn}为等比数列∴ b1=a1=2*1-1=1

∵2b3=b4 ∴q=b4/b3=2

∴bn=1*2^(n-1)=2^(n-1)

2问:

Tn=a1*b1+a2*b2+a3*b3+……+an*bn

∴Tn=1*1+3*2^1+5*2^2+……+(2n-1)*2^(n-1) ①

①×2:

2Tn=1*2^1+3*2^2+5*2^3+……+(2n-3)*2^(n-1)+(2n-1)*2^n ②

②-①:

-Tn=1*1+(3-1)*2¹+(5-3)*2²+(7-5)*2³+……+[(2n-1)-(2n-3)]*2^(n-1)-(2n-1)*2^n

=1+2*[2¹+2²+2³+……+2^(n-1)]-(2n-1)*2^n

=1+4*[1-2^(n-1)]/(1-2)-(2n-1)*2^n

=1+2*2^n-4-(2n-1)*2^n

=-(2n-3)*2^n-3

∴Tn=(2n-3)*2^n+3