设△ABC的内角A,B,C所对的边分别为a,b,c且acosC+ 1 2 c=b.
1个回答

(1)∵accosC+

1

2 c=b,

由正弦定理得2RsinAcosC+

1

2 2RsinC=2RsinB,

即sinAcosC+

1

2 sinC=sinB,

又∵sinB=sin(A+C)=sinAcosC+cosAsinC,

1

2 sinC=cosAsinC,

∵sinC≠0,

∴ cosA=

1

2 ,

又∵0<A<π,

∴ A=

π

3 .

(2)由正弦定理得:b=

asinB

sinA =

2sinB

3 ,c=

2sinC

3 ,

∴l=a+b+c

=1+

2

3 (sinB+sinC)

=1+

2

3 (sinB+sin(A+B))

=1+2(

3

2 sinB+

1

2 cosB)

=1+2sin(B+

π

6 ),

∵A=

π

3 ,∴B ∈(0,

3 ) ,∴B+

π

6 ∈(

π

6 ,

6 ) ,∴ sin(B+

π

6 ) ∈(

1

2 ,1] ,

故△ABC的周长l的取值范围为(2,3].

(2)另周长l=a+b+c=1+b+c,

由(1)及余弦定理a 2=b 2+c 2-2bccosA,

∴b 2+c 2=bc+1,

∴(b+c) 2=1+3bc≤1+3(

b+c

2 ) 2

解得b+c≤2,

又∵b+c>a=1,

∴l=a+b+c>2,

即△ABC的周长l的取值范围为(2,3].