正方形ABCD,将Rt△EFG斜边的中点与点A重合,直角顶点F落在正方形AB上
3个回答

1)过点E作EH∥FG,如图所示:

∵EA=AG,∠HEA=∠AGQ,∠HAE=∠GAD,

∴△EAH≌△GAQ,

∴EH=QG,HA=AQ,

∵FA⊥AD,

∴PQ=PH.

在Rt△EPH中,

∵EP2+EH2=PH2,

∴EP2+GQ2=PQ2;

(2)过点E作EH∥FG,交DA的延长线于点H,连接PQ、PH,

∵EA=AG,∠HEA=∠AGQ,∠HAE=∠GAD,

∴△EAH≌△GAQ,

∴EH=QG,HA=AQ,

∵PA⊥AD,

∴PQ=PH.

在Rt△EPH中,

∵EP2+EH2=PH2,

∴EP2+GQ2=PH2.

在Rt△PFQ中,

∵PF2+FQ2=PQ2,

∴PF2+FQ2=EP2+GQ2.

(3)四条线段EP、PF、FQ、QG之间的关系为PE2+GQ2=PF2+FQ2.