若函数f(x)=(a+x)(2-x)(常数a∈R)是偶函数,则它的值域为______.
1个回答

解题思路:利用偶函数的定义,求出a,可得函数解析式,从而可求函数的值域.

∵函数f(x)=(a+x)(2-x)(常数a∈R)是偶函数,

∴f(-x)=f(x),即(a-x)(2+x)=(a+x)(2-x),

∴2ax=4x,∴a=2,

∴f(x)=(2+x)(2-x)=4-x2≤4,

∴函数的值域为(-∞,4].

故答案为:(-∞,4].

点评:

本题考点: 函数奇偶性的性质;函数的值域.

考点点评: 本题考查偶函数的定义,考查函数的值域,正确运用偶函数的定义是关键.