an=1/[n(n+1)] ; 1≤n ≤6
=3(1/2)^n ; n≥7
1≤n ≤6
an = 1/[n(n+1)]
= 1/n -1/(n+1)
Sn = 1-1/(n+1) = n/(n+1)
n≥7
Sn = S6 + (a7+a8+...+an)
= 6/7 + ( 3(1/2)^7+3(1/2)^8+...+3(1/2)^n )
= 6/7 + 6[ 1- (1/2)^(n-6)]
ie
Sn = n/(n+1) ;1≤n ≤6
= 6/7 + 6[ 1- (1/2)^(n-6)] ; n≥7