cosα = [(PF1)^2 + (PF2)^2 - 4c^2]/[2·(PF1)·(PF2)]
》[(PF1)^2 + (PF2)^2 - 4c^2]/[(PF1)^2 + (PF2)^2]
显然,当PF1 = PF2,即P为短轴右顶点时取等号,此时(PF1)^2 = (PF2)^2 = b^2 + c^2 = a^2
即:cosα 》(2a^2 - 4c^2)/(2a^2) = (b^2 - c^2)/a^2 = (2b^2 - a^2)/a^2 = (2b^2/a^2) - 1
即:cosα≥(2b2/a2)-1
当α《 120°时 ,-1/2《 cosα《1
∴ -1/2《 (2b2/a2)-1《1
∴1/4《(b2/a2)《1 ,∴1/4《(1 - e^2)《1 ,∴0《e^2《3/4
∴0《e《(√3)/2