你都知1+2+3+...+n=(1/2)(n)(n+1)
(r+1)^3-r^3=3r^2+3r+1
所以:
2^3-1^3=3(1^2)+3(1)+1 ---(1)
3^3-2^3=3(2^2)+3(2)+1 ---(2)
4^3-3^3=3(3^2)+3(3)+1 ---(3)
...
(n+1)^3-n^3=3(n^2)+3(n)+1 ---(n)
(1)+(2)+(3)+...+(n):
(n+1)^3-1^3=3(1^2+2^2+3^2+...+n^2)+3(1+2+3+...+n)+n
n^3+3n^2+3n=3(1^2+2^2+3^2+...+n^2)+(3/2)(n)(n+1)+n
3(1^2+2^2+3^2+...+n^2)=(1/2)n(n+1)(2n+1)
1^2+2^2+3^2+...+n^2=(1/6)n(n+1)(2n+1)