本题可用多次相似来证明
设CN交⊙O于点E,连接AE,BE,延长EB到点F使BF=BE
连接CF
∵NA、NB是切线,∴∠NBE=∠BCN,∠NAE=∠≌NCA,
又∠BNE=∠BNC,∠ANE=∠ANC,
∴△NBE∽△NCB,△NAE∽△NCA
∴BE∶CB=NE∶NB,AE∶AC=NE∶NA,
∵NB=NA,∴BE∶CB= AE∶AC,∴BF∶CB= AE∶AC
∵∠CBF=∠CAE,∴△BCF∽△ACE,∴∠F=∠AEC
∵∠AEC=∠ABC,∴∠F=∠ABC
∵∠CEF=∠CAB,∴△ABC∽△EFC
∴AB∶EF=AC∶EC,又AB=2AM,EF=2EB
∴AM∶EB=AC∶EC
∵∠CAM=∠CEB,∴△ACM∽△ECB
∴∠ACM=∠BCN